Seismic isolation is a critical strategy for protecting structures from earthquake-induced damage by reducing the transmission of ground motion to the building. Two major types of isolators widely employed in seismic isolation systems are elastomeric and sliding isolators. While both serve the purpose of minimizing seismic forces, they differ substantially in materials, mechanics, design characteristics, and performance.
1. Composition and Structure
Elastomeric isolators are composed primarily of layers of elastomeric materials such as natural or synthetic rubber, alternated with thin steel plates bonded together to form a laminated bearing. These elastomers provide lateral flexibility while the steel plates contribute significant vertical stiffness and prevent lateral bulging of the rubber under load. Variations include high-damping rubber bearings (HDRB) and lead-rubber bearings (LRB), the latter containing a lead core for added energy dissipation through lead deformation.
In contrast, sliding isolators function through a frictional sliding interface between the structure and its foundation. They often incorporate steel or stainless steel bearing surfaces coated with low-friction materials like Teflon or similar composites. Common types include flat sliders and curved surface sliders such as friction pendulum systems (FPS). These isolators rely on controlled sliding motion during seismic events to decouple the structure from ground motion.
2. Load Bearing and Stiffness
Elastomeric isolators offer high vertical load capacity and are stiff under vertical compression, enabling them to support substantial building weights with minimal vertical deformation. Their flexibility in the horizontal direction results in significant lateral displacement capacity and allows for energy dissipation via material hysteresis, especially in lead-rubber bearings.
Sliding isolators handle vertical loads through a combination of the sliding interface and often an auxiliary restoring mechanism such as springs or laminated bearings. Their vertical stiffness is generally lower compared to elastomeric bearings, but they can accommodate larger horizontal displacements, sometimes up to +/- 1000 mm, which makes them suitable for structures requiring large movement capacity under severe seismic excitations.
3. Energy Dissipation Mechanisms
Energy dissipation in elastomeric isolators occurs mainly through the inherent damping characteristics of the rubber layers and, in lead-rubber bearings, through plastic deformation of the lead core. The damping ratio for these devices can range typically from around 20% (HDRB) to 30% (LRB).
Sliding isolators dissipate energy by friction generated between the sliding surfaces during relative motion. For example, friction pendulum systems dissipate energy by the sliding action of a slider on a curved concave surface, combined with a restoring force created by the pendulum effect of the structure’s weight. The frictional damping factor in these systems may exceed 30%, making them highly effective in attenuating seismic energy.
4. Movement Characteristics and Restoration
Elastomeric isolators exhibit lateral flexibility but no significant physical separation between the structure and the foundation. Movement is mostly deformation within the elastomer layers. The isolator’s stiffness properties govern the lateral displacement and its ability to return to the original position is elastic.
Sliding isolators allow actual relative displacement by permitting movement over the sliding surface. Restoration to the equilibrium position is achieved through mechanisms such as high-tension springs or the geometry of curved sliders. Sliding isolators can cause slight vertical displacement (lifting) of the structure due to the curvature in pendulum systems, which should be considered in design integrations.
5. Typical Applications and Suitability
Elastomeric isolators are commonly used in buildings and bridges that require moderate to high vertical load support and moderate lateral displacement. Their compactness, proven performance, and ease of manufacturing make them prevalent in many seismic isolation projects.
Sliding isolators are often preferred in cases where the expected seismic displacements are very large or where the structure and its connections can accommodate the large relative movement. They are widely used in critical infrastructure, heavy equipment isolation, and structures where high energy dissipation and long displacement capacity are necessary.
6. Limitations and Considerations
Elastomeric isolators may lose some vertical load capacity under very large lateral displacements due to bulging effects. Also, their energy dissipation capabilities, while significant, may be less than friction-based systems in some cases.
Sliding isolators require careful design of friction coefficients, restoration mechanisms, and displacement limits to prevent excessive relative movement that could damage connected systems. They generally do not combine well with elastomeric bearings in the same structure because the lifting effect at sliding locations can cause differential movement.
In summary, elastomeric isolators are rubber-steel laminated devices providing vertical stiffness and lateral flexibility with energy dissipation via material damping, ideal for moderate to high load applications with controlled displacements. Sliding isolators rely on frictional sliding surfaces and restoring mechanisms to accommodate large seismic displacements with high energy dissipation, suited for scenarios demanding large movement capacity and stronger damping effects. The choice between these isolators depends on structural requirements, load conditions, expected seismic motion, and specific performance criteria.
These distinctions are well-documented in engineering literature and seismic isolation technology reviews.[1][2][3]
[1] https://www.extrica.com/article/18455
[2] https://avestia.com/CSEE2019_Proceedings/files/paper/ICSECT/ICSECT_151.pdf
[3] https://www.mageba-group.com/in/en/1078/223329/What-you-should-know-about-seismic-isolation-solutions.htm